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Historical background: previous sequencing-based
expression measurements

I Serial analysis of gene expression (SAGE) has been around for a
while (Velculescu, et al., 1995), along with other methods such as
massively parallel signature sequencing (MPSS) and others.

I SAGE data comes from selecting small “tags”, one from each mRNA
fragment, then concatenating them and sequencing this long series
of sequence fragments using Sanger sequencing. Expression of a
gene is measured by counting how many times the tag from that
gene appears in the sequence.

I In general, the total number of tags sequenced per experiment is
relatively small (tens of thousands).

I Many statistical methods were developed in order to account for
biases in species detection, facilitate combining reads across libraries,
and measure differential expression from the observed counts - more
on this later.
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Next Generation Sequencing: NGS

I Illumina (Solexa), “Genome Analyzer I and II”

I Roche (454), “Genome Sequencer”

I Applied Biosystems, “SOLiD”

I Helicos, “Heliscope”

There are many articles/websites comparing the different technologies,
however the most prevalent platform appears to be Illumina at this point.
Publications: http://www.illumina.com/pagesnrn.ilmn?ID=93
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Applications of sequencing technology

High throughput sequencing has been used in many applications:

I Resequencing

I De novo genome sequencing

I Tag-based expression analysis

I RNA-Seq expression analysis

I ChIP-Seq to detect transcription factor binding sites

I Methyl-Seq to detect DNA methylation sites

I Small RNA sequencing

I Ribosome profiling

I CLIP-Seq to detect protein-RNA interactions
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Steps in analysis of sequencing data

The next lectures will walk through the steps needed to go from the
output of the sequencing machine to abundance measurements for
regions of interest. We will focus on tools from Bioconductor, although
others will be used as well. We will cover:

I Alignment

I Working with annotations (regions of interest)

I Aggregating counts to get a measure of abundance
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A first quick look at the data

Data from two lanes of D. melanogaster, one wild-type and one where a splicing factor has been knocked down.

(Data courtesy of Brenton Graveley.)
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Overview of Bioconductor NGS Packages

I IRanges : provides low-level containers used by many of the other
Bioconductor packages; useful for working with annotation

I Biostrings : provides complicated string processing methods,
emphasis is placed on speed, additionally provides a short read
alignment tool: matchPDict; useful for mapping

I ShortRead : provides functionality for processing NGS experiments,
namely reading in various aligned formats as well as lower-level
Illumina experiments; useful for file I/O, mapping

I BSgenome : provides tools for the ability to deal with genomes in R,
typically one uses a particular genome package, such as:
BSgenome.Scerevisiae.UCSC.sacCer1; useful for mapping

I GenomeGraphs : provides plotting functionality attached to live
annotation from Ensembl; useful for visualization, data quality
assessment, results analysis

I biomaRt : provides programmatic access to Ensembl and other
biomart databases; useful for working with annotation

I chipSeq : provides tools for dealing with Chip-seq experiments
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Overview of Bioconductor NGS Packages

I RTrackLayer : provides access to various genome browsers; useful for
examining results
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Mapping

These slides will discuss mapping of sequence data as well as the
Biostrings and ShortRead packages.

I Alignment and tools (mostly external to R).

I Biostrings overview.

I Alignment tools in Biostrings.

I Mapping data and reading it into R.
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Alignment input: FASTQ files

FASTQ files represent a common “end-point” from the various sequencing
platforms (i.e. NCBI short read archive,
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi). Qualities are
encoded in ASCII and depending on the platform have slightly different
meanings/ranges and encoding. More details can be found at:
http://en.wikipedia.org/wiki/FASTQ_format

@GA-EAS46_2_209DG:6:1:890:752
TTCTCTTAAGTCTTCTAGTTCTCTTCTTTCTCCACT
+GA-EAS46_2_209DG:6:1:890:752
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
@GA-EAS46_2_209DG:6:1:905:558
TCTGGCTTAACTTCTTCTTTTTTTTCTTCTTCTTCT
+GA-EAS46_2_209DG:6:1:905:558
hhhfhhhhhhhhhhhhhhhhhhhhhhhhehhGhhJh
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Alignment Tools

The number of short read aligners have exploded, but a couple tools have
emerged as the de facto standards.

I Eland: Illumina’s aligner, quality aware, fast, paired end capable

I MAQ: Good SNP caller, quality aware, paired end capable

I Bowtie: Super fast, offers different alignment strategies, paired end
capable

I BWA: Fast, indel support, paired ends, qualities

I NovoAlign: MAQ like speed, many features.

A superior overview of the different aligners is available at:
http://www.sanger.ac.uk/Users/lh3/NGSalign.shtml Additionally,
a comparison of two of the best aligners can be found here: http://www.
massgenomics.org/2009/07/maq-bwa-and-bowtie-compared.html
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Common Alignment Strategies

I Use qualities (default for Bowtie and MAQ)

I Perfect match, no repeats (Strict / Lenient)

I Mismatches, no repeats

I Paired end data (PET) (harder for RNA-Seq)

The standard Illumina protocol yields unstranded reads.

Most aligners are evaluated in terms of “how many reads are mapped”. Is
this the right objective?

Watch out for the output of the program; there are many different
conventions (0-based, what happens to read hitting the reverse strand,
etc.)
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SAM/BAM Formats

SAM (BAM) is a new general format for storing mapped reads. It is
developed as part of the 1000 Genomes project and is quickly becoming a
kind of standard. Some alignment tools output this format directly,
otherwise there are scripts in samtools for doing it for most popular
aligners. Details at http://samtools.sourceforge.net/index.shtml
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A comment

There are no great comprehensive tools for analyzing deep-sequence data.
It will involve a fair amount of coding and gluing together various tools.

We will introduce some tools from Bioconductor that can be useful.

I use a lot of shell scripting.
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Biostrings overview

I A package for working with large (biological) strings.

I Two main types of objects: A really long single string (think
chromosome) or a set of shorter strings (think reads or genes).
BString vs. BStringSet.

I These classes are implemented efficiently minimizing copy and
memory loading/unloading.

I The BSgenome contains some infrastructure for whole genomes.

I Methods for dealing with biological data, including basic
manipulation (complementation, translation, etc.), string searching
(exact/inexact matching, Smith-Waterman, PWMs).

I Fairly complicated class structure.

I’m sorry to say that, at least for me, this has become
hopelessly confusing, and I imagine that many other users
feel the same. – Simon Anders on bioc-sig-sequencing

Computing on genomes is not trivial. The approach to a given
computation is important.
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Strings in Biostrings

I BString (general), DNAString, RNAString AAString (Amino Acid),
all examples of XString.

I complement, reverse, reverseComplement, translate, for the classes
where “it makes sense”.

I Convert to and from a standard R character string.

I Constructor: DNAString("ACGGGGG").

I Support for IUPAC alphabet.

I Subsetting subseq, using the SEW format (two out of the three
start/end/width). Efficient.

I StringSets are collections of Strings, like DNAStringSet.
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BSgenomes

As examples, we will use whole genomes. Use available.genomes to get
available genomes. Long package names, but always a shorter object
name.

> library(BSgenome.Scerevisiae.UCSC.sacCer1)

> Scerevisiae

> Scerevisiae[[1]]

> Scerevisiae[["chr1"]]

A BSgenome may also have masks. We will ignore this for now.
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Biostrings, more

I alphabetFrequency, oligonucleotideFrequency and others.

> alphabetFrequency(Scerevisiae[["chr1"]])

> oligonucleotideFrequency(Scerevisiae[["chr1"]],

+ width = 3)

I chartr for character translation (“make all As into Cs”).

I Various IO functions (also ShortRead).
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Views

A view is a set of substrings of an XString, stored and manipulated very
efficiently. Example: to store exon sequences, one can just store the
genomic location of the exons.

> Views(Scerevisiae[["chr1"]], start = c(300,

+ 400, 500), width = 50)

A view is associated with a subject. Internally, they are essentially
IRanges, so they are very fast to compute with. Views can in many cases
be treated exactly as other strings. There are methods such as narrow,
trim, gaps, restrict.
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Matching in Biostrings

There are various ways of matching or aligning strings to each other. We
use matching to denote searching for an exact match or possibly a match
with a certain number of mismatches. Alignment denotes a more general
strategy, e.g. Smith-Waterman.

I matchPattern / countPattern: match 1 sequence to 1 sequence.

I vmatchPattern / vcountPattern: match 1 sequence to many
sequences.

I pairwiseAlignment: align many sequences to 1 sequence.

I matchPDict / countPDict: match many sequences to 1 sequence.
(“dict” indicates that the many sequences are preprocessed into a
dictionary).

I matchPWM, trimLRpattern

The different functions are optimized for different situations. They also
use different algorithms, which has a big impact. Especially
pairwiseAlignment is flexible and therefore has a complicated syntax.
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Example: mapping probes to a genome
Get a list of Scerevisiae probes from the “yeast2” Affymetrix array.

> library(yeast2probe)

> ids <- scan("s_pombe.msk", skip = 2,

+ what = list(probeset = character(0),

+ junk = character(0)))$probeset

> probes <- yeast2probe$sequence[yeast2probe$Probe.Set.Name %in%

+ ids]

> probes <- DNAStringSet(probes)

Mapping

> require(BSgenome.Scerevisiae.UCSC.sacCer1)

> dict0 <- PDict(probes)

> dict0.r <- PDict(reverseComplement(probes))

> hits <- matchPDict(dict0, Scerevisiae[[1]])

> table(countIndex(hits))

> table(countPDict(dict0, Scerevisiae[[1]]))

> allhits <- countPDict(dict0, Scerevisiae[[1]]) +

+ countPDict(dict0.r, Scerevisiae[[1]])

> table(allhits)
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ShortRead

ShortRead contains tools for

I Work with Illumina output.

I Generate QA report on Illumina files.

I Read a variety of short read data formats.
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Data

We will use data from (Lee, Hansen, Bullard, Dudoit, and Sherlock
(2008) PLoS Genetics).

We are considering a wild-type and a mutant strain of yeast. The two
strains were sequenced using an Illumina Genome Analyzer.

We are using a subset of the data: 100K reads from a single lane for one
strain.
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Reading the unaligned data

> require(ShortRead)

> fq <- readFastq(".", "mut_1_f.fastq.gz$")

> fq

There are various simple accessor functions for this object, especially
sread and quality.
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A brief look at the unaligned data

Using alphabetByCycle and as(, ”matrix”) (which creates a big read times
cycle matrix), we can do

> alp <- alphabetByCycle(sread(fq))

> matplot(t(prop.table(alp[DNA_BASES,

+ ], margin = 2)), type = "l")

> qaMat.raw <- as(quality(fq), "matrix")

> plot(colMeans(qaMat.raw))
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Alphabet By Cycle plot
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Mean Quality per Cycle
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Reading in the aligned data

We read data aligned with bowtie into R as a AlignedRead object

> aligned <- readAligned(".", pattern = "\\.bowtie.gz$",

+ type = "Bowtie")

> aligned
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Getting abundance data for regions of interest

I We want to get our data in a form where we can measure abundance
for regions of interest (e.g. transcript abundance in genes).

I We have already mapped our reads to our reference genome, so we
know what position they originated from.

I Next, we need to work with the genome annotation and produce
region-level summaries.

I We start by importing the annotation into R so that we can work
with it there.
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Working with annotation

We need to obtain annotation for our organism. Using Bioconductor this
can be done with the biomaRt package. This package allows us to
directly download information from Ensembl using the biomaRt interface.

> require(biomaRt)

> mart <- useMart("ensembl", "scerevisiae_gene_ensembl")

> yeastAnno <- getBM(c("ensembl_gene_id",

+ "chromosome_name", "start_position",

+ "end_position", "strand", "gene_biotype"),

+ mart = mart)

> head(yeastAnno, 2)
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Data Representation

Currently, we have the data stored where each line in our data file
represents a unique read. Often we want to count the number of reads
that overlap or start at a given position. One easy way to do this is to
use the pileup function from ShortRead.

> keep <- chromosome(aligned) ==

+ "Scchr01"

> ll <- seqlengths(Scerevisiae)

> names(ll) <- levels(chromosome(aligned))

> cov <- coverage(aligned[keep],

+ width = ll)

I What type of object is returned?
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Plotting coverage

> cov <- as.numeric(cov)

> keep <- cov > 0

> Indices <- (1:length(cov))[keep]

> plot(Indices, cov[keep], col = "blue",

+ type = "h", ylim = c(0, 100),

+ xlab = "Chromosome Position",

+ ylab = "Coverage")
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Plotting Coverage
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Associating Annotation to Reads

At an abstract level, we want to apply a function that associates the
aligned read data to the relevant regions of annotation and then counts
the number of reads that fall into each gene. This will be our measure of
gene expression.

First, we need to determine in which range each read lands. At the end
of the day, we want a data structure that looks more or less like this:

mut_1 mut_2 wt_1 wt_2
YHR055C 0 0 0 0
YPR161C 38 39 35 34
YOL138C 31 33 40 26
YDR395W 55 52 47 47
YGR129W 29 26 5 5
YPR165W 189 180 151 180
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IRanges

I An IRange is a set of integer ranges: {1− 4, 7− 10, 45− 89}. The
ranges can be overlapping or not, and are stored as (start, end,
width).

I Every range can be specified using 2 out of (start, end, width).

I This has proved to be a very general class of objects. Examples:
gene (annotation in general), DNA reads.

I A NormalIRanges is a minimal representation (in some sense): not
empty, non-overlapping, non-empty gap, ordered. They are
important for computational reasons.

I Many methods for IRanges are very fast. Some computations can be
sped up dramatically by converting the underlying objects into
IRanges, do the computation and then convert back.
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Some examples of IRanges functions

In our case, the integer ranges we are interested in are the base positions
between the start and end position of the yeast genes. But the package is
much more general and can be used for other kinds of analysis as well.
As a simple example:

> ir1 <- IRanges(start = 1:5, end = 6:10)

> ir2 <- IRanges(start = 4:12, width = 5)

> union(ir1, ir2)

> intersect(ir1, ir2)

> findOverlaps(ir1, ir2)

> as.table(findOverlaps(ir1, ir2))
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Some more details on overlap

The function findOverlaps can be confusing at first. The syntax is
findOverlaps(query,subject), and you can think of the result as a
binary matrix, with length(query) rows and length(subject)
columns. The return value you see is simply a “sparse” representation of
this matrix, giving only the coordinates of the non-zero elements.

Additionally, overlap can be called on two RangesList objects of the
same length. The resulting object is a list of objects of class
RangesMatching.
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Using IRanges to represent our annotation

First, we need to match the chromosome names as Ensembl uses roman
numerals and the Bowtie index used names.

> cNames <- levels(chromosome(aligned[[1]]))

> names(cNames) <- c(as.character(as.roman(1:16)),

+ NA)

> yeastAnno$chr <- cNames[yeastAnno$chr]

> yeastAnno <- yeastAnno[!is.na(yeastAnno$chr),

+ ]

Now, we construct a set of IRanges which represent our genes. Since the
IRanges class only includes a start, a stop and a width, we need one
IRanges object for each chromosome. In the last step, we construct a
RangesList object, which will be useful for our next steps.
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Using IRanges to represent our annotation

> annoByChr <- split(yeastAnno, yeastAnno$chr)

> iL <- lapply(annoByChr, function(d) {

+ IRanges(start = d$start_position,

+ end = d$end_position)

+ })

> iL <- do.call(RangesList, iL)

> iL
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Representing our reads as IRanges

Next, we convert our aligned reads into IRanges as well. Again, we need
a separate IRanges object for each chromosome, and they are arranged
into a RangesList.

> alnAsRanges <- as(aligned, "RangesList")

> alnAsRanges
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Counting reads that fall in our genes

Finally, we use the as.table and countOverlaps in order to compute the
counts within each gene (removing reads from the mitochondrial
genome). Unfortunately, this operation doesn’t yet do the right thing
with names, so we have to add the names back at the end; not elegant.

> alnAsRanges <- alnAsRanges[-length(alnAsRanges)]

> oCounts <- lapply(countOverlaps(alnAsRanges,

+ iL), as.table)

> geneNames <- split(yeastAnno$ensembl_gene_id,

+ yeastAnno$chr)[-c(1, 7)]

> o <- order(as.integer(as.roman(names(geneNames))))

> geneNames <- geneNames[o]

> oCounts <- mapply(FUN = function(cnts,

+ nms) {

+ names(cnts) <- nms

+ cnts

+ }, oCounts, geneNames)

> lapply(oCounts, head)
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